

Correlation of Analysis and Firing Test Results for a Turreted

Gatling Gun System

Prepared by: Callista Rodriguez

Presented by: Jim Talley

General Dynamics Armament Systems

Burlington, Vermont

17 April 2002

Analytic Modeling Process

- Objective: To Obtain a Correlated Model for system design studies and requirements flowdown
 - ➤ Traditional Linear Finite Element Analysis (FEA) Approach
 - New Non-Linear Rigid and Flexible Body Dynamics (ADAMS) Approach
 - Integrate ADAMS non-linear model with control system algorithms

Turret Configuration 33 Round Burst

Armament Systems

Correlation Parameters

- Three key elements are compared in the direction of large MPI shift
 - ➤ Targeting Point of Impact (PI) comparison (Hardstand and Turret)
 - muzzle pitch angle
 - muzzle translational velocity effects
 - ➤ Barrel bending shape (Hardstand)
 - ➤ Interface loads (Hardstand)

Linear Finite Element Models

- Small Deflections (No spinning barrel cluster)
- Linear system
 - Linear recoil adapter
 - ➤ No gaps
 - Fixed boundary conditions at motor
- Fixed temperature
- Mass of all components match weight reports or measurements
- P-T curve applied at barrel breech
- Turret is modeled as a lumped mass spring system using stiffness values from test

Tests Performed in Support of Correlation

- Gun in Hardstand and Turret Configurations
 - ➤ Modal Testing
 - ➤ Fire Testing of Static (non-rotating) Single Shots for muzzle angle and barrel shape measurements
 - ➤ Burst Fire Testing
 - Turret Stiffness

 Measurements

Hardstand Correlation for Normalized Predicted Impact Point

Comparison of Normalized Predicted Impact Point Due to Muzzle Angle and Lateral Velocity

- FEA results follow shape of test measurements
- Key Metric is Slope
- Projectile exit occurs within +/- .05 msec of 0 on the X axis
- Small differences in frequency between FE model and actual hardware make a significant difference in predicted target

Hardstand Barrel Deflection Correlation

Predicted shape is similar to measured shape

Modal Correlation in Turret Configuration 1st Elevation and Azimuth Modes

- Close comparison
- Most predictions up to 200 Hz within 7%

High Frequency Barrel Bending Mode

Barrel Deflected Shape at Projectile Exit

Most Significant Barrel Bending Mode

This mode is excited by high frequency pitching/yawing excitation due to

- Off center firing impulse which contains high frequency content
- Muzzle axial fixity (firing barrel recoil imparts moment at muzzle)

Correlation of Predicted Impact Point in Turret Configuration

- Most significant barrel bending mode is evident
- FEA results follow shape of test data
- Projectile exit
 occurs within +/ .05 msec of 0 on
 the X axis.

Non-linear ADAMS Model: Firing Animation

- Non-linear recoil adapter
- Spinning barrel cluster
- Flexible barrel cluster and housing
- Does not include modeling of friction or clearances

Barrel deflection is highly exaggerated

Non-linear ADAMS Model: Barrel X-Y Plot

Firing Barrel Muzzle Swept Motion

- Traces position of top barrel during spinning (counter clockwise)
- (0,0) center of muzzle cluster before gravity
- Exhibits deflection from gravity
- Exhibits barrel deflection when each barrel fires

ADAMS Muzzle Pitch Angle Comparison

Normalized Muzzle Pitch Angle

Shape of muzzle angle prediction is similar to test data High frequency components missing

GENERAL DYNAMICS

Armament Systems

Analytic Modeling

- Most Comprehensive and Successful Gun and Turret Correlation to Date
 - Correlation of linear FEM of gun in Hardstand and Turret configurations (traditional method)
 - Correlation of non-linear ADAMS model of gun in Turret configuration (New Approach)
- Both FEA and ADAMS models are excellent tools for design trade studies
- ADAMS Non-linear model advances state of the art analysis techniques for:
 - Greater fidelity of interface load calculations
 - Spinning stability evaluation including gravity effects
 - System failure mode evaluation